Environmental Risk Factors for Parkinson's Disease Harvey Checkoway, PhD University of Washington Dept. of Environmental & Occupational Health Sciences Seattle, WA *Supported by P42ES04696 #### Parkinson's disease - Chronic, neurodegenerative disorder due to dopamine deficiency - Cardinal features: resting tremor; bradykinesia, gait disturbance, muscle rigidity - First described by James Parkinson, 1817 (thought due to "fright") - Pathological lesion: destruction of dopamine-producing neurons in substantia nigra (Lewy body formation) - Prevalence in US ~150/100,000 (~2% at ages >65) - Incidence in US ~15/100,000 Figure 8-5. Typical flexed posture of a patient with parkinsonism. CHEMICAL STRUCTURE OF MPTP. MPP+, AND PARAQUAT #### Risk factors for Parkinson's disease - Older age: sharp increase over age 50 - Male gender: usually slight M:F ratio - Pesticides: - Paraquat* - Roteneone * - Organochlorines - Organophosphates, carbamates, etc. - Metals (Mn, Fe, Cu) - Solvents (??) - Rare genetic mutations (parkin, LRRK2) ^{*}Animal models established ### Suspected environmental risk and protective factors for PD #### Increase risk - Pesticides - Metals - Industrial solvents #### Decrease risk - Cigarette smoke - Caffeine - Anti-oxidant micronutrients - Estrogen - Anti-inflammatory medications ### PD relative risk by cumulative cigarette smoking history* *Checkoway H, et al. Am J Epidemiol 2002;155:732-8 #### Pesticides and Parkinson's disease - Many pesticides neurotoxic - Structural similarity of MPTP and paraquat - Animal studies - Paraquat + Mn interactions on nigral destruction - Rotenone model of PD induction in mice - Epidemiologic studies - Ecological correlation studies - Case-control studies (paraquat, OPs, organochlorines) - Brain tissue studies (organochlorines) ### Case-control study of pesticides and Parkinson's disease in Germany* | Exposure | Years
used | Cases | Controls | OR + | |--------------|---------------|-------|----------|------| | Herbicides | 0 | 238 | 287 | 1.0 | | | 1-40 | 59 | 44 | 1.7 | | | 41-80 | 34 | 15 | 3.0 | | | >80 | 20 | 10 | 2.4 | | Insecticides | 0 | 213 | 258 | 1.0 | | | 1-40 | 70 | 55 | 1.8 | | | 41-80 | 46 | 25 | 2.5 | | | >80 | 21 | 14 | 2.1 | | Organo- | Never | 262 | 309 | 1.0 | | chlorines | Ever | 7 | 2 | 5.8 | ^{*}Odds ratio, adjusted for age, gender, smoking ^{*}Seidler A, et al. *Neurology* 1996;46:1275-84 #### Case-control study of pesticides in Taiwan* | Exposure variable | Years
used | Cases | Controls | OR+ | |---------------------------|------------------|----------------|-----------------|-------------------| | Herbicides/
pesticides | 0
1-19
≥20 | 74
14
32 | 199
21
20 | 1.0
1.5
4.5 | | Paraquat | 0
1-19
≥20 | 89
7
24 | 218
13
9 | 1.0
1.2
6.4 | ⁺ Odds ratio, adjusted for age, gender, smoking ^{*}Liou HH, et al. Neurology 1997;48:1583-8 ## Pesticide-related occupations worked at least 6 months and PD in men: Seattle study* | Occupation | Cases
(N=135) | Controls
(N=226) | OR+ | |----------------------|------------------|---------------------|------| | Dairy farmer | 14 | 28 | 0.81 | | Orchardist | 6 | 9 | 1.49 | | Pesticide applicator | 4 | 4 | 3.88 | | Farmer –
any | 45 | 69 | 1.25 | ⁺Odds ratio, adjusted for age, smoking ^{*}Firestone J, et. Arch Neurol 2005;62:91-5 ### Self-reported pesticide occupational pesticide exposures and PD, men: Seattle study* | Exposure | Duration (yrs) | Cases
(N=135) | Controls
(N=226) | OR+ | |--------------|-----------------|------------------|---------------------|-----| | Any | 0.5-5 | 6 | 10 | 1.0 | | pesticide | >5 | 10 | 12 | 1.3 | | Incontinidas | 0.5-5 | 5 | 11 | 0.9 | | Insecticides | >5 | 9 | 11 | 1.2 | | Herbicides | <u>></u> 0.5 | 2 | 6 | 0.6 | | Paraguat | 0.5-5 | 0 | 1 | 0 | | Paraquat | >5 | 2 | 1 | 3.2 | ⁺Odds ratio, adjusted for age, smoking ^{*}Firestone J, et. *Arch Neurol* 2005;62:91-5. ### Parkinson's disease risk in an elderly French cohort, 1992-98* | | Men | | Women | | |--------------------------------|-----|---------|-------|---------| | Exposure | RR+ | 95% CI | RR+ | 95% CI | | Occupational | 5.6 | 1.5-22 | 1.0 | 0.2-4.8 | | Main job in agriculture | 1.6 | 0.3-8.6 | 8.0 | 0.1-6.4 | | Rural residence | 1.5 | 0.4-5.5 | 1.3 | 0.4-4.3 | | Residence in vineyard district | 0.5 | 0.1-2.3 | 0.9 | 0.2-3.2 | Relative risk, adjusted for smoking, education ^{*}Baldi I et al. (2003) Am J Epidemiol 157:409-14 ### Prospective cohort study of PD in men and years worked on Hawaiian plantations: 1965-96* | Duration
(yrs) | No.
subjects | Cases | RR++ | 95% CI | |-------------------|-----------------|-------|------|---------| | 0 | 5363 | 73 | 1.0 | Ref | | 1-10 | 1843 | 24 | 1.0 | 0.6-1.6 | | 11-20 | 315 | 7 | 1.7 | 0.8-3.7 | | >20 | 465 | 12 | 1.9 | 1.0-3.5 | ^{*}Petrovitch H, et al. *Arch Neurol* 2002;59:1787-92 **⁺Sugarcane or pineapple** ⁺⁺Relative risk adjusted for age, pack-yrs smoking, coffee consumption ### Pesticide Exposures and Parkinsonism: Any Pesticides Engel L, et al. Occup Environ Med 2001;58:582-9 #### Insecticide Exposures and Parkinsonism Engel L, et al. Occup Environ Med 2001;58:582-9 #### Herbicides Exposures and Parkinsonism #### Evidence for metals as PD risk factors - Chronic manganism similar clinical features as PD - Mn, Fe involved in free radical formation (via Fenton reaction) - Elevated concentrations of various metals in PD brain (mixed evidence) ### Occupational metal exposures and PD: Detroit area case-control study* | Metal | Exposure (yr) | Relative risk | 95% CI | |-----------|----------------|---------------|-----------| | Lead | <u><</u> 20 | 1.08 | 0.55-2.13 | | | >20 | 2.05 | 0.97-4.31 | | Iron | <u><</u> 20 | 1.02 | 0.59-1.75 | | | >20 | 1.27 | 0.69-2.34 | | Copper | <u><</u> 20 | 1.15 | 0.55-2.41 | | | >20 | 2.49 | 1.06-5.89 | | Manganese | <u>≤</u> 20 | 0.40 | 0.05-3.24 | | | >20 | 10.6 | 1.06-106 | ^{*}Gorell JM et al. (1997) *Neurology* 48:650-8 ### Combined occupational metal exposures and PD: Detroit area case-control study* | Metals | Exposures | Relative
risk | 95% CI | |------------------|-------------|------------------|-----------| | Lead +
Copper | Both >20 yr | 5.25 | 1.59-17.2 | | Lead + Iron | Both >20 yr | 2.84 | 1.07-7.50 | | Iron +
Copper | Both >20 yr | 3.69 | 1.40-9.71 | ^{*}Gorell JM et al. (1997) Neurology 48:650-8 # Parkinsonism prevalence among Alabama welders and boilermakers compared to general population rates* | Occupational group | Prevalence ratio+ | 95% CI | |--------------------|-------------------|----------| | Boilermakers | 10.3 | 2.6-40.5 | | | | | | Welders | 7.3 | 3.1-17.1 | | Welder helpers | 9.0 | 2.8-29.1 | | Combined | 7.6 | 3.3-17.7 | ^{*}Racette B, et al. (2005) Neurology 64:230-5 ⁺Compared to prevalence in Copiah County, MS ### Challenges in identifying environmental risk factors for PD - Case ascertainment—diagnostic uncertainty, few pop. based registries - Difficulties of accurate exposure assessment - Probably low attributable risks for specific agents - PD is a complex disease—potentially multiple phenotypes #### Recommendations for future research Better characterization of geneticallydetermined susceptibility factors (gene/environment interactions) Increased focus on populations with well documented exposures (e.g., pesticide applicators, welders, cotton textile workers exposed to endotoxin) #### Sometimes break-throughs occur!